
AD-A241 407

Y Research and Development Technlial Report
SLCET-TR-91-12

Fundamentals of Adaptive Noise
Canceling

Stuart D. Albert
Electronics Technology and Devices Laboratory

June 1991 D I.o1 ADTIC
G0CT10,1 99 11

DISTRIBUTION STATEMENT

Approved for public release.
Distribution is unlimited.

91-12713

U. S. ARMY LABORATORY COMMAND
Electronics Technology and Devices Laboratory

Fort Monmouth, NJ 07703-5601

91 0 ' O05



NOTICES

Disclaimers

The findings in this report are not to be construed as an
official Department of the Army position, unless so desig-
nated by other authorized documents.

The citation of trade names and names of manufacturers in
this report is not to be construed as official Government
indorsement or approval of commercial products or services
referenced herein.



REPORT DOCUMENTATION PAGE Fo Ar od

om whm40 mC. to 40 *."0l &'nW W~,i to W40"fto.. "**d*uMWS Servuat ovekotg Owtbo"" Ow0MMM ft.d =- i i
_ O . .n $ 0 4 t 4 4 . , I .A ., t a . Z 2 2 .4 ) 0 ) w d" t o t * f .t 0 U r. w 'n M d o f. Mr-7 -,"o- A d u c z to o * t (, M 7 .0" 0 I S O . W "M q W oI s >?i0

-I. AGENCY USE ONLY (Leave ban) 2. REPORT DATE 13. REPORT TyP ANDDTCOVERED
June 1991 1 Technical Report: 1988-1991

4. TITLE AND SUSTiT'E S. FUNIG NUME.

FUNDAMENTALS OF ADAPTIVE NOISE CANCELING PE: 62705A
PR: IL162705 AH94

____ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ TA: IM
. AUTHOR(S)

Stuart D. Albert

7.-PEKFORMWG ORGANIZATION NAME(S) AND ADORESS(ES) 1. PERFORMING ORGANIZATION
US Army Laboratory Command (LABCOM) REPOR NUMRER
Electronics Technology and Devices Laboratory (ETDL) i SLCET-TR-91-12
ATTN: SLCET-M
Fort Monmouth, NJ 07703-5601

9. SPONSOING]MONITORING AGENCY NAM(S) AND ADDRESSES). 10. SPONSORINGI MONITORING
AGENCY REPORT NUMIER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRPIBUTION CODE

Approved for public release; distribution is unlimited.

13. ABSTRACT (Maximum 2u00 words)
The theory underlying a possible solution, via adaptive noise canceling, to the cosite
interference problem encountered by co-located frequency hopping radios is presented.
it is also shown how and why adaptive noise canceling can be used, via an adaptive line
enhancer (ALE), to separate narrow band deterministic and wide band random signals.
Analysis of both an adaptive noise canceler with a single input and an adaptive line
enhancer are described in terms of the Wiener or optimal weights of a surface acoustic
wave (SAW) programmable transversal filter (PTF) contained within these circuits. In
an effort to explain how an adaptive noise canceler with a single input and an ALE
actually work, the functional relationship between the optimal PTF weight values (and
hence the PTF frequency response) and the interfering and intended signals is developed
in much more detail than is found in textbooks or review articles. Three different
adaptive algorithms (Least Mean Square, Differential Steepest Descent, and Linear Ran-
dom Search) for use with these adaptive filters are also described. A SAW device im-
plementation of a PTF that could be used in building an adaptive noise canceler with
single input or an ALE is described. Performance levels (maximum input power, inter-ference suppression, and switching speed) are given to illustrate its capabilities.

U. SU&JECT TERMS Adaptive filter, adaptive noise canceler, adaptive is. NUmAER OF PAGES
line enhancer, cosite interference reduction, adaptive algorithms 73
(Least Mean Square, Differential Steepest Descent, Random Search) 1f.MRc i CO
frequency hopping radio, programmable transversal filter, RF filter
17. SECUrITY CLASS'FICAT)ON IL SECURITY CLASSIFICATION 119. SEcuRITY .ASSICATOQ 20. LM(TATION OF ABSTRACTI

OF REPORT OF THIS PAGE Of ASTUACT
Unclassified Unclassified Unclassified UL

'iN I7540-01-250-5500 Standard Form 298 (Rev 2-89)
Pyf0dot Atij sw 031.



TABLE,OF CONTENTS

INTRODUCTION....................................1

ADAPTIVE NOISE CANCELING.........................5

ADAPTIVE NOISE CANCELING WITH A SINGLE INPUT ............... 10

ADAPTIVE LINE ENHANCER............................15

-ANALYSIS OF AN ADAPTIVE NOISE CANCELER WITH A SINGLE INPUT 17

ANALYSIS OF AN ADAPTIVE LINE ENHANCER ................. 24

-MEAN--SQUARE ERROR AS A PERFORMANCE MEASURE FOR
ADAPTIVE ALGORITHMS.................................38

-METHOD OF STEEPEST DESCENT.................. 45

GRADIENT ESTIMATION................................50

-DIFFERENTIAL STEEPEST DESCENT ALGORITHM...............51

LEAST MEAN SQUARE (LMS) ALGORITHM ..................... 54

RANDOM SEARCH ALGORITHM........................58

PTF HARDWARE IMPLEMENTATION............................60

-CONCLUSIONS....................................64

REFERENCES..................................66

Acoession For'

NTIS GRA&I
40DTIC TAB j

Unannounced [3
Justif icatio

By
Distribution/
Availability Codes

Avail and/or
Dis Special



LIST OF F-IGURES

Figure Page

1 WIENER FILTER ............. ....... .. .......... 3

2 AbDAPTIVE NOISE-CANCELING CONCEPT ....... ............ 6

3 PROGRAMMABLE TRANSVERSAL FILTER (PTF). ......... 7

4 ADAPTIVE NOISE CANCELER WITH A SINGLE INPUT ...... i

5 ADAPTIVE LINE ENHANCER ........ ............... 16

6 GENERATION OF AN ADAPTIVE FILTER ERROR SIGNAL . ... . 39

7- GRADIENT SEARCH OF UNIVARIABLE PERFORMANCE SURFACE . . 46

-8 GRADIENT ESTIMATION BY WAY OF DIRECT MEASUREMENT . ... 52

9_ THE ADAPTIVE LINEAR COMBINER .............. 55

10 HYBRID PROGRAMMABLE TRANSVERSAL FILTER -(HPTF) CONCEPT 62

iv



INTRODUCTION

This report presents the theory underlying a possible solu-

tion, via adaptive noise canceling, to a cosite interference prob-

lem encountered by co-located frequency hopping radios. When two

or more such radios and their antennas are independently operated

in close proximity, i.e., in a jeep or communication shelter, a

cosite interference problem can develop. In this type of situa-

tion, the radio may not be able to meet its specified bit-error-

rate. A degraded bit error rate means that the radio receiver's

sensitivity will be degraded, which results in a decreased communi-

cations range.

This type of interference problem is caused by the transmit-

ter's strong signal being too close to the frequency of the de-

sired, weaker signal, trying to be received. The difference in

power levels between the strong interfering transmitter signal at

the receiver input and the minimum signal the receiver is capable

of detecting could be in excess of 130 dB. For more details on a

typical cosite scenario (signal and interfering power levels,

frequency separation, required suppression, etc.) see Reference 18.

The receiver may not be able to provide the entire 130 dB of

interference rejection filtering needed at the transmitter frequen-

cy. Therefore, an external applique capable of supplying the

additional filtering may be required. An Adaptive Noise Canceler

with a single input is one possible way of providing the additional

filtering required.

Adaptive noise cancelers are not limited to separating narrow-

band signals that are close in frequency, i.e., they are not
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limited in application to just frequency hopping radios. A partic-

ular type of adaptive noise canceler known as an Adaptive Line

Enhancer (ALE) is capable of separating narrow-band, deterministic

signals from random widezband signals (e.g., it is capable of

protecting a weak wide-band, direct sequence spread spectrum signal

from a strong, interfering, narrow-band signal).

Initially, the theoretical steady-state performance of both an

adaptive noise canceler with a single input and an adaptive line

enhancer will be described by assuming that the adaptive process

has "converged" (i.e., the tap filter weights are no longer chang-

ing). These adaptive filters can then be approximated by and

understood as Wiener filters.

A Wiener filter is essentially a transversal filter that

produces an optimum output in a minimum mean square sense. A

Wiener filter is shown in Figure 1. The output of a transversal

filter is subtracted from a "desired" response, d, that is similar

to but not exactly the same as the signal to be detected. The

Wiener weights of the transversal filter are designed to minimize
n

the mean square error = E [ (d - Z Wi Xk-i)2) at the output of
i=0

the summer. When the Wiener weights are used, the transversal

filter gives an optimum or best estimate of the true signal value

(the signal that d, the desired response, is similar to).

In an effort to explain how an adaptive noise canceler with

single input and an ALE actually work, the functional relation-

ship between the optimal or Wiener PTF weight values (and hence

the PTF frequency response) and the interfering and intended signal

are developed in much more detail than is found in textbooks or

2



--- - -

I
IIIi.

+ I L
I I 0

* I w

a iII X

04 00)

ia:a 3
C I L I Iw L

ii

10 ww~
II OW

3



review articles. Building on this analytical foundation is then

-shown why:

1. For the case of a weak narrow-band intended signal versus

a strong narrow-band interferer, the frequency response of the PTF

within an adaptive noise canceler with single input is dominated or

controlled by the strong interfering signal. This results in a PTF

passband and an adaptive noise canceler notch around the interfer-

ing frequency.

2. For the case of either a weak random wide-band intended

signal versus a strong narrow-band interferer or the case of a weak

narrow-band intended signal versus a strong random wide-band inter-

ferer, the frequency response of the PTF in an ALE is determined by

the narrow-band signal. This results in a PTF passband around the

narrow-band frequency and a notch in the ALE output at this same

narrow-band frequency.

After the steady-state performance of the subject adaptive

filters has been described, three different adaptive algorithms

(Differential Steepest Descent, Least Mean Square, and Random

Search) are introduced. These algorithms describe how the adaptive

filter tap weights must be iteratively modified in order to ap-

proach a "steady-state" condition.

Finally, a SAW device implementation of a P1£F that could be

used in building an adaptive noise canceler with single input or an

ALE is described. Performance levels (maximum input power, inter-

ferences suppression, and switching speed) are given in order to

illustrate its capabilities.

4



ADAPTIVE NOISE CANCELING

An Adaptive Noise Canceler as shown in Figure 2 works as

follows:

"A signal is transmitted over a channel to a sensor that

receives the signal plus an uncorrelated noise No . The combined

signal and noise S + No form the primary input to the canceler. A

second sensor receives a noise N1 , which is uncorrelated with the

signal but correlated in some unknown way with the noise No . This

sensor provides the reference input to the canceler. The noise N1

is filtered to produce an output Y that is a close replica of No.

This output is subtracted from the primary input S + No to produce

the system output, S + No - y.,,l

The output of the canceler is used to modify, via an appro-

priate adaptive algorithm, the frequency response of the adaptive

filter.

The adaptive filter will usually be implemented as a program-

mable transversal filter (PTF) (see Figure 3). A transversal

filter is the preferred implementation because:

1. It is one of the simplest filter structures. The filter

output is simply the sum of delayed and scaled inputs.

2. There is no feedback from the taps to the input.

3. It is stable. Since there is no feedback, a finite filter

input produces a finite filter output.

4. It has a linear phase characteristic, i.e., it produces a

phase shift that is linearly proportional to frequency. It

can be shown19 that if a signal is to be passed through a

linear system without any resultant distortion, the overall

5
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system frequency response must have a constant amplitude

gain characteristic over the frequency spectrum of the

input signal and its phase shift must be linear over the

same frequency spectrum. Filtering without distortion is

important for adaptive noise canceling because the adap-

tive filter must pass the interference without distortion

so that it can be subtracted (at the summer) from the

unfiltered interferer. If the adaptive filter introduces

distortion then the summer is no longer subtracting two

identical interferers.

5. There is a simple and analytically tractable relationship

-between the frequency transfer function of a transversal

filter and its parameters (see equation 47). The complicated

nonlinear relationship between parameters and transfer func-

tion for most other filter structures makes the analysis and

calculation of adaptive algorithms much more difficult than

for transversal filters.

6. Widrow's algorithm, one of the most widely used adaptive algo-

rithms, assumes a transversal filter structure.

A PTF forms a weighted sum of delayed versions of the input

signal. It is programmable in that the weights can be changed.

Changing the weights changes the frequency transfer function of the

PTF. A PTF is identical in structure to a programmable finite

impulse response (FIR) digital filter.

The specific technology used to implement a PTF will depend on

the frequency range of interest. For VHF and UHF applications,

Surface Acoustic Wave (SAW) devices are an appropriate technology.

8



At these frequencies, SAW technology can give t:he appropriate

sampling rates (intertap delay) and total delay times necessary to

implement transversal filters with the required frequency resol-

ution needed for cosite interference reduction.

9



ADAPTIVE NOI-SE CANCELING WITH A SINGLE INPUT

Before an adaptive noise canceler can be implemented, a

reference signal correlated with the interfering signa-l but not the

intended signal must be generated. When the interfering signal

o is much stronger than the intended signal S, the reference

signal can be generated by modifying the adaptive noise canceler of

Figure 2 to give the circuit shown in Figure 4. In Figure 4 the

primary and reference inputs are connected together. In effect,

Figure 4 assumes that the reference input is equal to the primary

input. This uay at first appear contradictory. The reference

input N1 has to be correlated to the interference NO , not the

signal S. But since the signal S is part of the primary input, it

-will be -part -of reference input if the reference input equals the

primary input as per Figure 4. Hence, the reference input appears

to be correlated to the signal also. When the interfering signal

N0 is much larger than the intended signal (N >> S), the apparent

contradiction is resolved. In this case the reference input N1 (N1

= S + No = primary input) is highly correlated with and "looks"

like the interfering signal No (i.e., N1  NO).

While S is a component of N1 and therefore will correlate to a

certain extent with N1 , No is so much larger than S that N1 will be

much more highly correlated to No than S. So to a very good

approximation, the reference input N1 is correlated to the

interference No not the signal S. This is what was to be proved.

It will now be shown why the reference input must be corre-

lated to the interference and not the signal. The adaptive filter

10
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within the canceler must filter the reference input N1 to produce

an output Y that is a close replica of No . If N1 is not correlated

to NO, i.e., if N1 does not "look" somewhat like No, then no amount

of filtering can make Y look like No . To prove that the reference

input (or primary input) of Figure 4 is more highly correlated to

the interference than to the signal, first note than, the reference

input equals

(S + o)IJY

where.:

S = input signal amplitude

No = input "noise" or interference amplitude

The factor 1/,/2 appears because the input power splitter is

assumed to evenly split the power associated with the signal and

interference amplitudes S and No . Since power is proportional to

amplitude squared, reducing power by a factor of 2 means that

amplitude is reduced by F/ at each output of the input power split-

ter.

Since we are assuming that No is much larger than S, i.e.,

N >> S, it follows that (S+No)/I. is more highly correlated with

No than with S. To be more explicit, if we define2 the average

cross-correlation R1 2 (T) between two waveforms V1 (t) and V2 (t) as

R12 (T) - lim 1 'T/2
T-00 T J-T/2 V1 (t) V2 (t+r)dt (i)

where r is the relative time displacement between the two wave-

forms V1 and V2. Then the correlation between the reference input

and the noise input is

12



r 1 (2)

R(ref)(noise)(T r / St+ot N0 (t+r)dt
T-+0T f T/2 J

The correlation between the reference input and the signal input

is

T/ S (t) +No(t)
R(ref)(noise)() - i 1 T/2[St N (t+)dt

T- T j-T/2 1(t+T)dt

Si.nce Ly assumption No>>S, at r = 0 the dominant term in the

integrand of equation (2) for R(Ref) (Noise) (0) will be (No(t))2

i.e., the limit of the integral can be approximated by

lim 1 T/ 2 No(t ) ) 2 a t (4
T -0 f N-T/2 R(Ref)(Noise) (0)

In a similar analysis, -he dominant term in the integrand of

equation (3) for R(Ref) (Signal) (0) will be No(t)S(t)., The limit

of the integral can be approximated by

lim T/2 S(t). No(t)dt R(Ref)(Signal) ()(5)

T- 1 TJT/2 2

No >> S implies that

(No(t))2 >> No(t)S(t) (6)

Since (No(t))2/./ is the approximate integrand of R(Ref) (Noise)(0)

and No(t) S(t)//2 is the approximate integrand of

R(Ref) (Noise) (o),

equations (4) and (5) and inequality (6) imply that

R(Ref) (Noise) (o) >> R(Ref) (Signal) (o) (7)

13



In other words inequality (7) indicates that the reference

signal is much more highly correlated with the noise than with the

-signal, as was to be demonstrated. This means that the reference

signal "looks" more like the interference, No, than the signal S.

As the adaptive algorithm iterates, it will cause the adap-

tive filter to form a bandpass around the interfering frequency,

FNo. If the PTF has been properly designed, then the resulting

bandpass filter will "pass" FNo the interfering frequency and

"reject" the intended signal frequency. Then the output of the

adaptive filter (the filtered reference signal) will "look" even

more like No/./_ than the input signal. When this output is sub-

tracted from (S + No)/I1, at the summer, a signal very similar to

S/,/2 will remain. The interference has been canceled. The circuit

shown in Figure 3 does indeed behavc as an adaptive noise canceler.

I

14



ADAPTIVE LINE ENHANCER

The discussion up to this point was only concerned about

protecting a narrow-band sqnal from narrow-band interference. It

is also desirable to be %: -. separate narrow-band signals from

random broad-band sign. , .aveforms encountered ir, communica-

tions systems are in many c ses unpredictable. A random signal is

often an appropriate model ,,c a real signal. The following dis-

cussion will deal with sepabating both:

I. A weak random broad-band signal from a strong narrow-band

interferer, and

2. A weak narrow-band signal from a strong random broad-band

interferer.

An Adaptive Line Enhancer (ALE) illust:ated in Figure 5 is one

possible method of performing this signal separation. An adaptive

line enhancer di:'ers from an- "Adaptive Noise Canceler with a

single input" as shown in Figure 4 in that, a delay has been intro-

duced preceding the adaptive filter. In order to understand how an

ALE works, a more detailed analysis of Figure 4 will be necessary.

15



a-~

a-o.

LU
z

eN M1 K.W. NM9 a U. U gK 0 -0 0a an a m a-*

U-J

U -__

LU LU

in LUL

W~ w>0 >

a.0

< LU

CL
Z 0

U
Cc/ CL-C
< ~LU Z

LUL
0:30

A-
Fr CL w

16



ANALYSIS OF AN ADAPTIVE NOISE CANCELER WITH A SINGLE INPUT

After the adaptive process has converged, the performance of

the filter in the adaptive noise canceler of Figure 4 can be ap-

proximated by a Wiener filter. This means that after convergence

the adaptive algorithm has produced (by adjusting the adaptive

filter frequency response) a system output ((S+No)/Th) - Y, that is

a best fit in a minimum mean square error sense to S/,/2. In other

words, the mean square error is minimized, i.e., the average value

taken over a large number of samples of,

(system output - intended signal input)2

2/

S+NO -Y

is a minimum. In effect, the adaptive algorithm is minimizing the

interference power at the adaptive noise canceler output by causing

(via tap weight adjustment) the adaptive filter output Y to "look"

like the interference No .

The adaptive filter frequency response can be controlled by

varying its tap weights. The optimal weight vector W*, the Wiener

weight vector, that minimizes the mean squared system output is

given by

W* = R-1 P (8)

where R = Input Correlation Matrix

and

P = Cross-Correlation Column Vector

17



:X 2 , XkXk i  , XkXk-2  ,. ., X k-n

Xk-lXk, Xk- I  ,Xk-i-Xk-2,'" Xk-lXk-n
R =E .( 91)

-nXk,- Xk-nXR-1 Xk-nXk-2..., _k-n

The symbol E means that the matrix R is composed-of the ex-

-pected or mean values of the indicated products of adaptive filter

tap outputs (see Figure 3). The main diagonal terms of R are the

mean squares of the tap outputs. The off-diagonal terms are the

cross-correlation among the tap outputs.

P = E [ dkXk, dkXkl, dkXk_2, ... , dkXk (l0)

where dk is the desired response at "time" k. When Xk is the

reference input to the adaptive noise canceler of Figure 4, dk is

the primary input. In terms of Figure 4's notation:

dk= S+ N0

Xk = S + No

/(12)

The components of the vector P are the cross-correlations

between the desired response and the adaptive filter tap outputs.

Equations 8, 9, and 10 can be used to investigate the influ-

ence of the interferer and the intended signal on the optimal

weight vector W*. Of particular interest are those conditions

under which W* and hence the frequency response of the adaptive

filter are only a function of the interfering signal. This is what

18



will allow the adaptive filter to form a "bandpass" around the

interferer and reject the intended signal.

A typical element of the autocorrelation matrix (equation

9) is E [Xk.i . Xkj], i.e., Rij = E [Xk-i . Xkj]

where:

Xk = signal input to the adaptive filter at time k or at

sample k.

Xki = total signal at the ith tap of the adaptive filter.

Xk-j = total signal at the jth tap of the adaptive filter.

k is a time index, not necessarily a unit of time.

If we assume, as per Figure 4, that the input to the adap-

tive filter is

Xk= S + No

where:

S = signal

No = noise or interference

then E (Xk.i Xkj] = 1/2 E [(S+No)k-i • (S+No)kj] (13)

- 1/2 E [(Sk-i + Nok_i) (Sk- j + Nokj)]

E [Xk-i Xkj] = 1/2 (E [(Sk-i . Sk-j) (14)

+ (Si Nok j )

+ (Noki Sk-j) + (Noki Nok j )

E (Xk.i . Xkj] = 1/2 (E [Sk- i . Sk.j) + E [Sk i .Nok-j ] (15)

+ E [N oki- Sk j

+ E [Noki Nokj])

Interference occurs when the noise is much larger than the intended

signal, i.e., No >> S. We shall therefore assume that:

19



NO >> S (16)

The last term in equation 15 which is a function of the inter-

ference but not the intended signal will usually be the largest

term in the equation since all other terms are expected values of

products containing S (the intended signal). Clearly if the inter-

ference is greater than the signal (No >> S), then No 2 > N0 S > S
2

and in most cases

E [Nok-i * Nokj ]

will-be larger than either

E [Ski - Sk_j] ,

E [Sk-i Nok ], or

E[NOki Sk

It is possible for Noki and Nokj to be 90 degrees out of

phase (for narrow-band deterministic interference). In this case,

E(Noki Nok might not be larger than the other terms in equa-

tion 15 and the sum of all four terms would be of order NOS which

is much smaller than No2 . Every element of the autocorrelation

matrix R is either dominated by the interference No or is small

compared to it. If the autocorrelation matrix R is dominated by

the interference, it can be shown that R-1 will also be dominated

by the interference.

The Wiener weight vector W* that minimizes the mean square

adaptive noise canceler output is given by equation 8. The preced-

ing analysis has shown that R and hence R-1 are dominated by or are

primarily functions of the interfering signal. If it can be shown

that P the cross-correlation column vector is also dominated by the

interfering signal, then equation 8 will imply that the Wiener

20



weight vector W* is primarily a function of the interference. As

mentioned previously, this primary dependence of W* on the inter-

fering signal is what will allow the adaptive filter to form a

bandpass around the interferer: pass the interferer and reject the

intended signal.

The cross-correlation vector P will now be investigated.

From equations 10, 11, and 12:

P = E [dk Xk, dk Xk.l, dk Xk_2, .... , dk Xkn] (10)

dk =Sk + Nok (11)

Xk = Sk + Nok (12)

also

Xki = Sk i  + NOk i

~(17)

A typical element of P is:

Pi = E [dk - Xk-i] (18)

where i can vary between 0 and n.

Substituting equations 11 and 12 into equation 18 gives:

Pi = 1/2 E (dk - Xk-.i] = E [(Sk + Nok) . (Sk-i + Nok.i)] (19)

= 1/2 E ((Sk Sk-i) + (Sk NOk-i) + (NOk Sk-i) +

(Nok  N ok i ) ]

Pi = 1/2 (E (SkSk-i] + E (SkNoki ] + E(NoSk-i] + (20)

E(Nok Nok i])

21



The analysis of equation 20 is now very similar to the analy-

sis of-equation 15. Since it is assumed that No >> S, the last

term of the equation,

E (Nok * Nok-i]

will usually be the largest term of the equation because all the

other terms are expected values of products containing S. Even-

tually the same conclusion will be reached about the cross-corre-

lation vector P that was arrived at in reference to the autocorrel-

ation matrix R, that is, every element of P is either dominated by

No ortsmall compared to it.

Since P and R- are dominated by N0 , it follows from equation

8 that W*, the optimal weight vector, will also be dominated by the

interference. The inteference "controls" the optimal weights.

This is the conclusion that was to be established.

The adaptive noise canceler circuit of Figure 4 works when

both the intended signal and the interferer are narrow-band. When

the strong interfering input to the circuit is a random wide-band

signal, the canceler will not be able to filter it out. The PTF

will not be able to reject the weak narrow-band intended signal and

pass the random wide-band interferer (assuming they overlap in

frequency) as was done in the narrow-band interferer vs. narrow-

band intended signal case previously discussed.

If the PTF could put a passband around the narrow-band intend-

ed signal and filter out most of the strong random wide-band inter-

ferer, then signal separation could be achieved. In effect, this

means that the narrow-band intended signal would control the PTF

22



frequency response as opposed to the narrow-band interferer vs.

narrow-band intended signal case where the interference dominated

and controlled t PTF frequency response.

If an appropriate delay is placed in front of the PTF in the

adaptive noise canceler, as shown in Figure 5, the resulting cir-

cuit is known as an Adaptive Line Enhancer (ALE). This circuit is

capable of putting a passband around a narrow-band intended signal

in the presence of a strong wide-band random signal. As a result,

it is capable of separating these two types of signals. In the

following section it will be shown why an ALE works this way.
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ANALYSIS OF AN ADAPTIVE LINE ENHANCER

Equation 8, will be used to analyze the adaptive line

enhander shown in Figure 5. The analysis will show that the ALE

can be -used to separate the following:

CASE 1 - A weak, random broad-band signal from a strong

narrow-band interferer.

CASE 2 - A weak, narrow-band signal from a strong random,

broad-band interferer.

For both cases:

S weak intended signal

N o  strong interferer or "noise" where No >> S

CASE 1

S = weak, random, broad-band signal

No = strong, narrow-band interferer

E'quation 10 for P the cross-correlation vector has as its

components the cross-correlations between the desired response (dk)

ahd the adaptive filter tap outputs (Xk, Xk.l, .... , Xk.n). dk is

the input to the positive terminal of the second or output summer

as shown in Figure 5.
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Assuming that the input power is evenly split between the

primary and reference (upper and lower) branches of the ALE

circuit:

dk = Sk + Nok

(21)

Where Sk and Nok indicate that each of these signals is sampled at

the time corresponding to time index k.

The-amplitude that will be the input to the delay element

in the lower branch of the ALE is also (Sk + Nok)//2. The delayed

output is denoted by (DSk + DNok)/./2, where "D" indicates that the-

signal has been delayed by delta (A-) units of time. Thus

(DSk + DNok)/I is the input to the adaptive filter, i.e.,

Xk = (DSk + DNok) / T2 (22)

The signal on the first tap of the adaptive filter is

XM-= (DSk-1 + DNok-l) / T2 (23)

This means that the signal out of the first tap introduces a time

delay of one sample period, i.e., Sk_ 1 and Nok1 denote Sk and

Nok delayed by one sample period. The signal amplitude on the ith

tap is Xk.i

Xk-i = (DSk-i + DNok i) / J- (24)

A typical component of the cross-correlation vector P, such

as the ith component, is E [dk Xki]. Equations 21 and 24 for dk

and Xk-i imply that:
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E(Sk+N ) (DSk_ DNk4) (25)

= 1/2 E (Sk . DSk-i + Sk • DNoki + N DSk-i + No •DNoki]

E idk Xk-i] = 1/2 (E [Sk DSk_i) + -E [Sk •DNoki ]  (26)

+ E [Nok • DSk.i] + E [Nok • DNoki)

The purpose of introducing a delay element into an-adaptive

noise canceler to form an ALE is to decorrelate the wide-band

component of the input from i tself. If the delay time delta (A) is

chosen larger than the autocorrelation time of the wide-band

signal, then the correlation between the delayed and the original

-wide-band component will be zero by definition of autocorrelation

t-ime. For Case 1, S is the weak random broad-band intended signal.

If the delay time A is larger than the autocorrelation time of S,

then:

E (Sk DSk-i] = 0 (27-)

for all i or equivalently for all taps of the adaptive filter. The

left side of equation 27 is just the first term of equation 26.

The analysis now becomes very similar to the analysis of the

cross-correlation vector of an adaptive noise canceler. Since it

is assumed that the noise or narrow-band interference No is much

larger than the signal S (No >> S), this implies that in most cases

the last term of equation 26 will be much larger than either of the

other two non-zero terms, i.e.,

E (Nok * DNOk.i) > E (Sk • DNOk.i] (28)
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and

E [Nok • DNOki] > E (Nok • DSk.i] (29)

It is possible., however that No and DNok i may be 90 degrees out of

phase. In this case,

E [Nok* DNok-i]

might not be larger than the other terms and inequalities 28 and 29

would not be valid. But then the sum of all three non-zero terms

would be of order NoS, which is much smaller than No2 Therefore,

every component of the cross-correlation vector P is either domi-

nated by the narrow-band interference No, via inequalities 28 and

29 and equation 26 or is small compared to No .

A typical element of the autocorrelation matrix for an ALE is

E (Xk.i • Xk.j] = 1/2 *E -((DSk-i + DNOk.i) • (DSk-j + DNok-i)] (30)

E [Xk.i Xk.j] = 1/2 (E (DSki - DSkj] +

E [DSki • DNok j ]  + E (DNoki • DSk.j] + (31)

E [DNOki * DNo kj])

Equation 31 is very similar to equation 15 for a typical ele-

ment of the autocorrelation function of an adaptive noise canceler

with a single input. The only difference is the delay. The analy-

sis of equation 31 is exactly the same as equation 15. Since the

interference No is much larger than the intended signal, every

element of the autocorrelation matrix R for an ALE is either

dominated by the narrow-band interference or is small compared to

it. This will also be true for the inverse, R-1 . It was previ-

ously shown that this is also true for the ALE cross-correlation

matrix P. Therefore equation 8 for the optimal weight vector

W*= R-IP implies that the weight vector that the adaptive filter
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"converges" to is primarily a function of the interfering narrow-

:band Signal, No .

This is why the adaptive filter in an ALE puts a "bandpass'

around the interferer. For all practical purposes it never "sees"

(via equations 8, 9, and 10 for W*, R-1 and P, respectively) the

intended random wide-band signal.

In other words, for Case 1, (a weak random broad-band signal

and a strong narrow-band interferer) it has been shown that R and P

(,given by equations 9 and 10-, respectively) are primarily functions

of, or are dominated by NO. Equation 8 then implies that the

optimum weight vector w* is dominated by No. Equation 47 (see Case

2 analysis) gives the frequency response H(w) of the PTF as:

n
H(w_ = Z i e A(-i) (47)

where:

H(w) = frequency transfer function

-0 = frequency

A-= intertap delay

n = Number of taps

The frequency response H(W) is a function of the weights Wi . The

optimum weight vector W* is primarily a function of No the narrow-

band interferer. A consequence of the domination of W* by No is

that when W* is substituted into equation 47, H(o) develops a peak

or maxima around the frequency of the narrow-band signal. It is in

this sense that the PTF frequency response never "sees" the intend-

ed- weak random broad-band signal.
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CASE 2

Let S = weak narrow-band intended signal

No = strong wide-band random interferer

Equation 8, W* = R-1 P, was again used to analyze the ALE.

-The ith component of the cross-correlation vector P is still given

by equation 26. Now No, the strong interferer, is a wide-band

-random signal. It is again assumed that the delay time A is chosen

larger than the autocorrelation time of the wide-band random

signal. As a result, correlation between the delayed and original

wide-band random signal will be zero, i.e.,

E (Nok * DNok i] = 0 (32)

Thus, for case 2, E [Nok • DNOki] is not the dominant term

in equation 26 that it was for case 1 and in fact it makes no

contribution to equation 26.

Thus, by the introduction of an appropriate delay time A, the

influence that E (Nok * NOk-i] had in equation 20 for the cross-

correlation matrix element for an adaptive noise canceler with

single input becomes nullified. Since the interference No is

assumed to be much larger than the intended signal S,

E (Nok • Noki]

for the adaptive noise canceler with single input or

E [Nok * DNOk-i]

for an ALE has the potential to be the dominant term in equation 20

or 26, respectively. The elimination of the left-hand side of

equation 32 is the major effect that the time delay in the ALE

produces.
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The interferer can only contribute to the cross-correlation.

element via the second and third terms of equation 26,

E [Sk " DNOki ]: and E (Nok • DSk_i).

However, since No ->> S, these terms will be many orders of

magnitude smaller than E (N Ok-i * NOk-i ] or E (Nok-DNoki]), where

the intertap delay A is not chosen long enough to decorrelate No.

In thd ideal case, if there is no correlation between the signal S

-and the interference, then both E [Sk • DNOk.i] and E [Nok . DSk-il

wili eual zero. Then in equation 26 only the first term,

E (Sk • DSk-i], will be non-zero. This term is a function of only

the intended signal, not the interference. So if a weak narrow-

band intended signal and a strong wide-band random interference are

uncorrelated, the cross-correlation vector is only a function of

the intended signal, not the interference.

Thus, for an ALE an appropriate time delay will minimize the

effect of the wide-band random interference on the cross-correla-

tion vector P. Since W* = R-1 P, it is necessary to know how inter-

ference and the time delay affect R, the autocorrelation matrix and

its inverse R-1 . A typical element of the autocorrelation matrix

for an ALE is given by equations 30 and 31. The last term in

equation 31 is potentially the largest term since No >> S. This

term gives the major effect of the interfering signal on the auto-

correlation matrix.

The conditions under which the last term in equation 31,

E (DNoki * DNok j] is zero or relatively small will now be inves-

tigated.
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Assume that the random wide-band interference is white noise,

i.e., with a power spectral density that is constant (say C) for

all frequencies. It can be shown3 that the Fourier transform of

the power spectral density of this white noise,the autocorrelation

function R (r), is the same constant times a delta function

S(r) i.e. R(r) = CS(T). (33)

-Equation 33 implies that R(r) is equal to zero except for r = 0.

This means that for a white noise signal N(t), N(t) and N(t + r)

are uncorrelated and independent no matter how small T becomes.

The fourth term of equation 31, E [DNOki • DNokj ], is basi-

cally the autocorrelation of the delayed interference input (DNOk)

to the adaptive filter of the ALE. The correlation is performed

between the ith and jth taps of the filter. It correlates the

interference output that appears at the ith and jth taps using a

correlation delay that is equal to the propagation delay between

the two taps.

If it is assumed that No is white noise, then equation 33

implies that

E [DNok-i ' DNok.j] = 0 when i + j (34)

and that

E [DNok-i • DNo kj] = C when i = j (35)

If it is further assumed that the signal S and the interference No

are uncorrelated, then the second and third terms of equation 31

are zero for all values of i and j.

Thus, for white noise interference, the autocorrelation

matrix given by equation 31 is as follows:

for the off diagonal elements (i + j) equation 34 implies that:
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Ruj= 1/2 E [DSk.i " DSk-j] (-36)

for the diagonal elements (i=j):

E [Xki • Xk.i] 1/2 (E [DSk-i • DSki] (37)

+ E [DNok i " DNoki)

Substituting equation 35 into equation 37 implies:

Rii= 1/2 ( E [DSki • DSk-i] + C) (38)

and since No >> S,

E (DMOki • DNok.i] >> F (DSk.i DSki] (39)

Inequality 39 when substituted into either equation 37 or 38

implies-that

=ii C/2 (APPROXIMATELY) (40-)

it follows from inequality 39 and equation 40 that the off

diagonal elements (given by equation 36) are small compared to

the diagonal elements. Expressed as an inequality;

Ri >> Rij (41)

Inequality 41 and equation 40 imply that for white noise

interference, the autocorrelation matrix R can be approximated by

a matrix that is both diagonal and scalar (a scalar matrix is a

diagonal matrix whose diagonal elements are all equal)

C/2,0 ....... 0
0,C/2,0 ..... 0

R (42)

0 ... C/2
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If a matrix is scalar, its inverse will also be scalar. So

R- 1 can be expressed as follows:

K-,-0. ........ 0
0,K, 0, .... , 0

R . (43)

0 ... K

where K is some function of C, the power spectral density of the

wide-band random interferer, K can be factored out of equa-

tion 43 to give:

1,0 ....... 0
0,1,0,......,

R-1 K (44)

0 ... 1

The matrix in equation 44 is the identity matrix I. Equation 44

now becomes:

R- 1 = KI (45)

Where K is a scalar or number not a matrix.

Substituting equation 45 into equation 8, W* = R-1 P, for the

optimal weight vector of the adaptive filter gives

W* = KIP = KP (46)

since IP=P.
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Equation 46 can be used to investigate the frequency transfer

function of the adaptive filter. The adaptive filter is a tapped

delay line or transversal filter. The frequency response of a

tapped delay can be shown4 to be

n
H(s) = Z WiejwA(-i) (47)

i=1

where:

H(W) = frequency transfer function

w = Lfrequency

A = intertap delay

n = number of taps

j=J

Substituting equation 46 into equation 47 gives:

n n
H'(w) = Z Wie-JOAi E KPie-j&Ai (48)

i=l i=l

n
H(W) = Ki.i Pie-J)Ai (49)

Equation 49 indicates that K (and hence C) does not affect

the relative frequency response, i.e.,

n n
H (NJ) K E Pie-(Jl)Ai Z Pie-J( l)Ai

i1l i=l

(50)
n n

H (W2 ) K Z Pie-J(2)A1i  Z Pie-j(02)Ai

K is just a multiplicative or scale factor in equation 49. It

cannot affect the relative frequency response, H(cI)/H(02),

because it cancels out in equation 50. Thus, for a white noise

interferer uncorrelated with the signal, the use of the optimal
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weights W* for the adaptive filter in the ALE causes the relative

frequency response to be determined by the cross-correlation vector

P. However, it was previously shown that for an ALE, an appropri-

ate time delay will minimize or possibly eliminate the effect of

the wide-band random interference on the cross-correlation vector

P. P will be determined by S, the weak narrow-band signal (apsum-

ing that the signal S and the interference no are uncorrelated).

The signal S will determine the relative frequency response (via

equation 50), i.e., S will determine the frequency response up to a

scale factor. The interferer No will determine the scale factor K

(K is a function of C the power spectral density of NO).

Therefore, for white noise interference, it is the weak

narrow-band intended signal that determines what frequencies are

passed or rejected by the adaptive filter. This is why the adap-

tive filter (for Case 2) can put a "bandpass" around the signal S

and later subtract it from S + No at the summer.

The key assumption in the above analysis was that the wide-

band random interferer was white noise. White noise uncorrelated

with the signal implies that R (via equation 42) and R-1 (via

equations 43 and 44) are scalar matrices. The scalar matrix R-1

implies equation 46: W* = KP. Equation 46 implies that the

relative frequency response is determined by P. But the correla-

tion vector P is determined by the signal S. Thus it was concluded

that the relative frequency response is determined by the intended

narrow-band signal.

It will now be determined whether or not the conclusion, that

the relative frequency response of the adaptive filter is deter-
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mined by the intended narrow-band signal, is still valid if the

wide-band random interferer is not white noise. If R1 and R_1

still remain scalar matrices, then the conclusion will remain

valid. A typical element of the autocorrelation matrix R for an

ALE is given by equation 31. If the noise and the signal are

uncorrelated equation 31 becomes:

Rij = 1/2 (E [DSk-i DSkj] + E (DNoki DNokj]) (51)

If it is assumed that No >> S then the diagonal terms of equa-

tion 51 are given by

Rii = 1/2 E [DNoki DNoki] (52-)

Rii is a measure of the energy at tap i of the adaptive filter.

Assuming that the same energy appears at each tap, then Rii will

have the same value for all i, i.e.,

1 = R22 =RNN (53)

The off-diagonal elements- of R are still given by equation

51 since No>>S. The first terms of equation 51 will be small.

compared to the diagonal elements, i.e.,

E [DNOki ' DNOki] >> E [DSk-i • DSkj] (54)

If the second term of equation 51 is also small compared

to the diagonal elements, i.e., if:

E [DNoki DNOki] >> E [DNok-i DNk]j (55)

then equations 51, 52, 53, 54, and 55 imply that the autocorrela-

tion matrix R can be approximated by a scalar matrix.
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Therefore, the conclusion that the relative frequency response is

determined by the intended narrow-band signal remains valid.

The key assumption above was inequality 55. It shows that the

delayed random wide-band interference No must significantly decor-

relate between the ith and jth taps of the adaptive filter for R to

be approximated by a scalar matrix. Since i and j can take on any

values, except i = j, the delayed random wide-band interference

must significantly decorrelate over one intertap delay time in

order for R to look like a scalar matrix. This will insure that

the relative frequency response is determined by the intended

signal and hence that the ALE will put a "bandpass" around the

intended signal.

It is important to note that for both case 1 (S = weak random

wide-band intended signal, No = strong narrow-band interferer) and

case 2 (S = weak narrow-band intended signal, No = strong random

wide-band interferer) it is the narrow-band signal that the adap-

tive filter puts a "passband" around. Intuitively this makes

sense. A narrow-band deterministic signal can be subtracted from

the sum of the same narrow-band deterministic signal and a wide-

band random signal. The narrow-band signals can cancel out.

Subtracting a wide-band random signal from that same sum will not

cancel out the wide-band random signal. Randomness will prevent

cancellation.
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MEAN SQUARE ERROR AS A PERFORMANCE MEASURE FOR
ADAPTIVE ALGORITHMS

Before adaptive algorithms can be investigated, a performance

measure or performance function for the adaptive filter must be

defined. A very useful and well understood performance function

evaluated in this paper is Mean Square Error.

The generation of an adaptive filter error signal is illus-

trated in Figure 6. The sampled output of the adaptive filter Yk

is subtracted from a sampled desired signal response to generate

an error signal. The "desired" response will not usually be the

intended signal that is being sought to detect. If the intended

signal was known there would be no need for an adaptive filter to

detect it. The "desired" response must be related to the intended

signal in some manner. For the case of an adaptive noise canceler

-(illustrated in Figure 2) the "desired" response is the primary

input, i.e., the intended signal S plus the interference No .

By taking the square of the adaptive filter error function

k, 6k will never be negative and will therefore possess a minimum

value.

The adaptive filter should be able to work with random input

signals and random "'desired" responses as well as with determin-

istic signals because communications signals are often modeled as

random signals. This suggests that an appropriate performance

function for an adaptive filter would be the average or mean of the

2squared error (denoted by E [sk]). Mean square error can also be

interpreted as the average power of the error signal in Figure 5.
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The mean square error as a function of input signal, "desired"-

response, and tap weights can be derived using the following defi-

nitions. The error signal Ck at time index k is defined as:

Ck = dk - Yk (56)

The output of the PTF is given by:

Yk = Wo Xk + W1 Xk_1 + W2 Xk_2 + ... + Wn Xk.n

If the column vectors W and Xk are defined by

Wo  and Xk!.Xk_1

W =Xk

Wn Xk-n

then equation 57 can be expressed as the vector dot product of

W andXk

Yk= WT " Xk (58)

where WT is the transpose of W, i.e., WT is a row vector.

Equation 58 can also be expressed as:

Yk XkT . W (59)

Substituting equations 58 and 59 into equation 56 gives:

Lk = d XkT W=d k -WT. Xk (60)
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Now square equation 60 to get:

2 = (dk -XkT • W) (dk -WT • Xk) (61)

-)-k --- • - -4 •x
2 k- W T * -dk XkT XT*W w Xk)

-4 -4 -4 -4 - -

e 2z = d 2 + (W Tk .•W) -2dk (T(2262
k k +(TXk) (XkT ) ~2kXk.W) (2

The second term of equation 62 can be written as

(WT Xk) • (XkT . W) WT . [x k T W (63)

where (Xk XkTJ is a matrix given by:

4X2 XkXk_ 1  Xkl . XkXk -nk I I 1 1

Xk-lXk, X2- 1  ,Xk-Xk-2,''. Xk-lXk-n

EXk T] = (64)

2
Xk-nXk, Xk-nXk-1 , Xk-nXk-2,.. ,

Substituting equation 63 into equation 62 gives:

2 = d 2  + WT r X XT] W -2 dk(Xk T . W) (65)
k!

If it is assumed that Ck, dk and Xk are statistically stationary
-4

(i.e., statistical characteristics are independent of time) and W

is held constant, then taking the expected value of equation 62

over the time index k yields the following expression for mean

square error (MSE):
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MSE =E 2C E d 2 +T*E xkT] W

- 2 E (dkXkT] . W (66)

where E denotes the expected or mean or average value of the quan-

tity in brackets. In equation 66; E [XkXkT ] is just the input

autocorrelation matrix R (see equation 9) and E [dkXkT] is just

the cross-correlation vector P (see equation 10). Equation 66 then

becomes:

MSE-= E 2 = E (d2] + WT * R W - 2 pT W (67)

It is obvious from equation 67 or 66 that MSE is a quadratic

function of the components of the weight vector W, i.e., the compo-

nents of W appear in equation 67 or 66 raised either to the first

or second power. This implies that when MSE is plotted against all

the tap weights the result is a hyper paraboloid. If"there are n

taps in the PTF then a plot of MSE versus tap weights yields an

(n + 1) dimensional "parabola." This plot is known as a perfor-

mance surface.

An n + 1 dimensional parabola can be thought of as an (n + 1)

dimensional "bowl". This "bowl" must be concave upward; otherwise

there would be weight settings that would result in a negative MSE

(i.e., negative average error signal power). This is impossible

with teal physical signals. Since the MSE is a quadratic function,

this implies that there is a single point at the bottom of the MSE

performance surface "bowl." This point is the minimum MSE. The

objective of all adaptive algorithms is to drive the weights and

the resulting MSE toward this point.
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Equation 8 for the optimal weight vector W* provides a direct

method of locating the bottom of the MSE performance surface bowl.

When we assume a weight vector W = W* then the mean square error is

at its minimum. This is known as the direct or matrix inversion

algorithm. This algorithm has several severe drawbacks associated

with it:

1. If the PTF has n taps, then (n+l) (n+4) / 2 autocorrelation

and cross-correlation measurements must be made in order to deter

mine R and P. Such measurements must be repeated whenever the

input signal statistics change with time.

2. The autocorrelation matrix must then be inverted.

3. "Implementing a direct solution requires setting weight values

with a high degree of accuracy in open loop fashion, whereas a

feedback approach provides self correction of inaccurate settings

thereby giving tolerance to hardware error."'5 In other words,

because equation 8 has no feedback from the error output, highly

accurate weight values are required.

When the number of weights is large or the input data rate

(or hopping rate for frequency hopping radios) is high, then 1 and

2 above imply severe computational and time requirements on any

direct solution. The processor implementing a matrix inversion

algorithm might not be able to implement it fast enough for the

algorithm to be of any use. Because of these problems, no adaptive

algorithms that require the measurement of an autocorrelation

matrix or the computation of its inverse were investigated.
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Two types of adaptive algorithms that do not require any

knowledge of the autocorrelation matrix are the methods of seepest

Descent and Random Search.
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METHOD OF STEEPEST DESCENT

Before introducing the method of steepest descent for an

arbitrary number of tap weights (or equivalently an arbitrary

number of dimensions in the mean square error performance surface)

it is helpful to consider the method of steepest descent for the

simplest case: just one weight.

The one weight (univariable) performance surface, which is a

parabola, is shown in Figure 7.

The method of steepest descent does not require knowledge of

the autocorrelation matrix R or the cross-correlation vector P.

Since R and P are unknown, equation 67 cannot be used to define

the MSE performance surface. But since mean square error can also

be interpreted as the average power of the error signal, MSE can be

measured.

In order to find W*, the weight that causes the MSE to be

minimized, an arbitrary weight value Wo is initially assumed. The

average power of the error signal is then measured in order to

determine the MSE at Wo, i.e., one point on the MSE performance

"surface" shown in Figure 7 has been located. The ability to

locate points on the MSE performance "surface" allows measurement

of the slope of the parabola at Wo (the method by which the slope

is measured depends on the type of steepest descent algorithm

used).

A new weight value W1 is then chosen equal to the initial

value Wo plus an increment proportional to the negative of the
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slope at Wo

w= wo + A (-slope) (68)

The point on the performance surface corresponding to W1 is

lower down on the parabola than the point corresponding to Wo . it

is closer to the minimum than the first point. Another new value,

W2 , is then derived in the same way by measuring the slope of the

parabola at W1 , i.e.,

W2 =W 1 + A (-slope) (69)

This procedure is repeated until the slope of the parabola at

the iterated poiit is zero. It is obvious from Figure 7 that when

the slope of the parabola is zero, then W*, the weight that causes

the MSE to be minimized, has been identified. To summarize, for a

one weight filter with a parabolic error surface, the negative of

the slope of the parabola is used to "slide" down to the bottom of

the "bowl."

For a filter with n taps and an n + 1 dimensional hyper para-

boidal mean square error surface, the objective is still to "slide"

down the error surface to the bottom of the "bowl."

In order to identify (at any given point on the MSE surface)

the direction in which to slide, the negative gradient vector of

the MSE surface is used. The gradient of the MSE surface at a

given point on the surface gives the direction in which the MSE is

increasing fastest at that point. The negative of the gradient is

the direction in which the MSE is decreasing fastest. It points

the way to the steepest (and "fastest") descent down the MSE

"bowl." Hence the name "Method of Steepest Descent."
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The gradient V of the MSE surface is defined as the vector

= aMSE, a(MSE), .... , a(MSEj (70)
a0Wo  awl awn  I

i.e., each component of V is a partial derivative of the MSE with

respect to a given weight.

The method of steepest descent can be expressed by the fol-

lowing algorithm:

Wk 1 = Wk + (-Vk) (71)

where

=Wk = the weight vector at the kth iteration, i.e., the

set of tap weights used on the kt_,h iteration.

Wk+i = the weight vector at the k+lth iteration

Vk = the gradient at the kth iteration point on the MSE per-
formance "surface"

= a constant that regulates the step or increment size of
the weight vector change. It determines how far to
"slide" down the performance surface before another
iteration is performed.

Equation 71 is a direct generalization of the one dimensional case

(equations 68 and 69). For any given set of tap weights,

Wk, a new set Wk+1 can be computed (via equation 71) that yields a

smaller mean square error. In order to use equation 71 it must be

possible to compute the gradient Vk at the kth iteration point.

The manner in which the gradient is computed depends on the spe-

cific steepest descent algorithm that is used. All steepest de-

scent algorithms, however, use the fact that mean square error can
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be -interpreted as the average power of the error signal to locate

points on the MSE performance surface and to ultimately use these

points to compute the gradient. To summarize equation 71, the

defining equation for the method of steepest descent, allows an

iterative approach to the optimal weight vector W* without any

knowledge of the autocorrelation matrix R or the caoss-correlation

vector P. The only prerequisite for using equation 71 is the

ability to measure average error signal power.
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GRADIEIV ESTIMATION

The two most widely used methods for estimating the gradient

at a given point on the mean square error surface a-e: the Dif-

ferential Steepest Descent (DSD) algorithm and Widruw's Least Mean

Square (LMS) algorithm.
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DIFFERENTIAL STEEPEST DESCENT ALGORITHM

In the DSD algorithm, each of the partial derivatives in

equation 70 are estimated by the method of symmetric differences

illustrated in Figure 8. To calculate a(MSE)/aW i at a given value

of W i = WGiven, all the weights except W i are held constant. As

per Figure 8, the mean square error is "measured" at

W i = WGiven + 6 and at W i = WGiven - 6. The slope of the line be-

tween the two points is then calculated via equation 72

MSE(WGiven + 6) - MSE (WGiven - 6) (72)
slope =

26

This slope is an approximation of 8(MSE) / aW i at W i = WGiven.

The MSE terms in equation 72 above are just estimates of the

true MSE based on measurement of the average error signal power.

There will be an error associated with each MSE measurement. This

means that a(MSE) / aWi given by the slope in equation 72 will have

an error associated with it. Since 6 is small, MSE (WGiven + 6)

and MSE (WGiven - 6) will be very close to each other. When the

two MSE values are subtracted, -; in equation 72, the resulting

error (on a percentage basis) becomes greatly magnified. The only

way to reduce this subtraction or slope error is to reduce the MSE

error. This is done by repeated MSE measurement at both WGiven + 6

and at WGiven - 6. In other words, the error signal average power

must be measured M times at both WGiven + 6 and at WGiven - 6; M

will be determined by the accuracy requirements of the particular

application. Therefore, DSD algorithm requires 2M error signal

average power measurements per tap per iteration.
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In the DSD algorithm, once the gradient has been approximat-

ed -(via equation 70) by the method of symmetric differences it is

substituted into the defining equation (equation 71) for the method

of steepest descent and a new set of tap weights are calculated.
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LEAST MEAN SQUARE (LMS) ALGORITHM

In the LMS or Widrow's algorithm it is assumed that the adap-

tive filter is an adaptive linear combiner (see Figure 9). If

data are acquired and input in parallel to an adaptive linear

combiner, the structure in Figure 9a is used. For serial data

input the structure in 9b is used. Note that Figure 9b is just a

tapped delay line or transversal filter. It is further assumed

that a "desired" response signal is available. These two assump-

tions were not made for the DSD algorithms. So DSD is more

general than LMS, i.e., it is not tied to a single filter struc-

ture. LMS is only applicable to the adaptive linear combiner.

In the LMS algorithm, each of the partial derivatives in

equation 70 can be estimated by assuming that the mean square

error (MSE) can be estimated by a single measurement of the error,

i.e.,

MSE 2 (73)

where Ck = single measurement of the error at the kth iteration.

Equation 73 is the key assumption in the LMS algorithm. Substitut-

ing equation 73 into equation 70 results in:

Vk= a(__ e__ 2_(__2a(e

k Ik I ... (74)
aWo awl awn

where Vk is the gradient of the MSE performance surface at the kth

iteration point.

a(75)k _ k dc =s ~
aWi  dek dWi  dWi
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Since an adaptive linear combiner filter structure was as-

sumed, this implies that:

N
k= dk - Z Xki Wki (76)

i=o

where Xki = signal at tap i during the kth iteration

Wki = tap weight at tap i during the kth iteration.

Taking the derivative of equation 76 implies

d~k
= -Xki (77)

dwki

In equation 77, in order to be- consistent with equation

75, w6 will change Xki to Xi and Wki to Wi . Equation 77 then

becomes:

= -Xi (78)
dWi

Substituting equation 78 into equation 75 gives:

ak2 k -2 kXi (79)
awi

Substituting equation 79 into equation 74 gives:

Vk = [-2Ek Xo, -2Ek X1 , ... , -2ck Xn] = 2EkXk (80)

where Xk = [Xo, X1  .... Xn] , i.e., Xk is a vector representing

the tap values at the kth iteration.

The method of steepest descent is defined by equation 71:
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Wk+l = Wk + (-Vk) (71)

Substituting equation 80 into equation 71 gives:

Wk+l = Wk + 24- E kXk (81)

Equation 81 is the LMS algorithm.

The LMS algorithm is very easy to compute, and, given the

right hardware, it can be done very quickly. It does not require

off-line gradient estimation or repetitive error measurements as in

the DSD algorithm. In addition, for a given iteration, all of the

signal values (X0, X1  ... Xn) at the individual taps can in

theory be measured in parallel at the same time. This allows a

parallel measurement of the gradient (via equation 80). This is

in contrast to the DSD algorithm where each partial derivative

(a(MSE) / awi) must be measured sequentially in order to compute

the gradient via equation 70. Thus the LMS algorithm'is potential-

ly much faster than the DSD algorithm.
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RANDOM SEARCH ALGORITHM

So far, two adaptive algorithms have been considered: Least

Mean Square (LMS) and Differential Steepest Descent (DSD). LMS

adapts faster than DSD. LMS does, however, require knowledge of

the signal value at each tap of the programmable transversal filter

(PTF). This requirement adds additional complexity to the adaptive

filter. An auxiliary PTF has to be added to the adaptive filter.

The tap signal values are measured on the auxiliary PTF so as not

to interfere with the operation of the "main" PTF. DSD is more

general than LMS, but it requires that all the partial derivatives

of mean square error with respect to the weights (a(MSE) / aWi) be

measured (sequentially). In addition, the MSE must be measured a

number of times to insure accuracy. Random search algorithms do

not require knowledge of the signal at each tap bf tht PTF as does

LMS. Nor do they require measurement of a(MSE) / aWi as does DSD.

Random search algorithms tend to be slower than LMS, but faster

than DSD. DSD, however, will outperform random search algorithms

in terms of certain performance measures that are beyond the scope

of this report. Random search algorithms are useful when LMS

cannot be applied, i.e., when the adaptive filter is not an adap-

tive rinear combiner or PTF or when its complexity is not "afford-

able".

One of the most efficient random search algorithms is the

Linear Random Search (LRS) algorithm. In LRS: "a small random

change Uk is tentatively added to the weight vector at the begin-

ning of each iteration. The corresponding change in mean square
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error performance is observed. A permanent weight vector change,

proportional to the product of the change in performance and the

initial tentative change, is then made.
''7

The new weight vector generated by the LRS algorithm is

given by

Wk+l = Wk + [ (Wk) - (Wk + Ak) ] Ik (82)

where:

Ak is a random vector.

-(W,) is an estimate of mean square error at W = Wk based on

N samples.

(Wk + Ak) is an estimate of mean square error at W = Wk + Ik

based on N samples.

g is a design constant affecting stability and rate of adaptation.
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PTF HARDWARE IMPLEMENTATION

Although the primary purpose of this report is to describe the

theoretical principles of adaptive noise canceling, this section

will be devoted to a description of a SAW device implementation of

a PTF.

"Several programmable SAW filters have been reported in the

literature.I0-13 Most are used for match filter operation. A

SAW/FET approach demonstrated 50 MHz of bandwidth centered at 150

MHz. However, tap control range was limited to 16 dB and single
14

tap insertion loss was 80 dB. A monolithic GaAs approach in

which the SAW and the FETs are implemented on the same substrate

has demonstrated 58 dB dynamic range at 500 MHz over a 50 MHz

bandwidth. 15 ,16 ,171,

A promising approach suitable for use in an adaptive noise

canceler, is a hybrid programmable transversal filter (HPTF).I6,17

All programmable transversal filter designs reported to date are

severely limited by poor tap weight control range (which limits

filter sidelobe performance) and poor dynamic range (which limits

sensitivity). The HPTF solves both of these problems by combining

a LiNbO3 SAW device for high dynamic range with GaAs dual-gate FETs

for high tap weight control range. Measured tap weight control

range (70 dB) and dynamic range (85 dB over a 100 MHz bandwidth)

are high enough to meet many system requirements.

"The HPTF consists of a tapped SAW delay line whose output

electrodes are connected to an array of tap weight control dual-

gate FETs (Figure 10). The signal is applied to an input trans-
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ducer, which generates a surface acoustic wave that propagates

down the substrate. An array of output transducers transforms this

acoustic wave back into electrical signals that are delayed copies

of the original input. Each output transducer is connected to the

input (gate-l) of a dual-gate FET (DGFET) tap weight control ampli-

fier. The tap weight is controlled by gate-2 voltage. The DGFET

outputs (drains) are connected to a common current summing bus.

The transversal filter can now be identified by the process of

shift, multiply and sum. Negative tap weights are generated with a

second DGFET array whose output is inverted by an external differ-

ential amplifier. This alleviates the need for an invertor at each

tap.tt16 ,17

The maximum power handling capability of an HPTF is limited

by the power that can be safely applied to the SAW input trans-

ducer (about +20 dBm).

Typically, when used either as a bandpass or notch filter, an

HPTF can reduce interfering signals by 40-50 dB. A single tap

weight on the HPTF can be changed in approximately 1 microsecond.

To change an entire set of tap weights to a second set will usually

take much longer. A 16-tap HPTF has 16 weights to be changed. If

this is done serially, then the single tap switching time of 1

microsecond must be multip-ied by 16. In reality, a 128 tap filter

will be needed. So a 1 microsecond switching time per tap must be

multiplied by 128. In addition, a controller must address and

transfer the tap weights to the HPTF. The transfer time per

tap could be much larger than the single tap switching time. If

the HPTF is included in an adaptive noise canceler, then a number
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of tap weight sets will have to be transferred from the controller

to the HPTF. The output power of the HPTF will have to be measured

and transferred to the controller.

If Widrow's algorithm is used, the signals on each tap have to

be measured and transferred to the controller. For each tap, the

controller will then have to calculate a new weight. The speed of

the calculation will depend on the speed of the controller. All

this overhead implies a much longer time to achieve adaptive con-

vergence (in an adaptive noise canceler) than to simply switch a

single tap weight.

It is expected that a 128-tap HPTF type filter will be able

to achieve 30 dB of filtering (in an adaptive noise canceler

configuration) in approximately 1 millisecond. A 128 tap HPTF

type filter is currently being developed for ETDL by Texas Instru-

ments under Contract No. DAAL01-88-C-0831.
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CONCLUSIONS

The theoretical principles developed within this report (i.e.,

the mathematical structure of the autocorrelation matrix R, the

cross-correlation vector P, and the Wiener or optimal weight vector

W*) imply that adaptive noise canceling is a viable method of

separating weak and strong signals.

Tf both the intended and interfering signals are narrow-band,

then an adaptive noise canceler with a single input is the appro-

priate filter structure. This is because, as shown in the "Analy-

sis of an Adaptive Noise Canceler with a Single Input" section, the

optimal weight vector W* will be dominated or determined by the

strong interferer. This will cause the programmable transversal

filter (PTF) to form a bandpass around the strong interferer, pass

the interferer, and reject the intended signal. The output of the

PTF (the filtered interfering signal) is then subtracted from the

signal plus interference at the output power combiner and yields

the intended signal.

For separating narrow-band and random wide-band signals, the

adaptive noise canceler must be configured as an adaptive line

enhancer. As was shown in the "Analysis of an Adaptive Line

Enhancer" section, an appropriate delay before the PTF in the ALE

will cause a passband to appear (in the PTF frequency response

curve) around the narrow-band signal. Most of the random wide-band

signal will then be filtered out. The resulting narrow-band signal

w-ill be subtracted from the sum of both signals (at the output
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power combiner). The output of the combiner is the wide-band

signal. In this way signal separation is achieved.

The choice of an adaptive algorithm for an adaptive noise

canceler depends on scieral factors. If adaptation time is most

important, then Least Mean Squares (LMS) should be chosen. If

simplicity and hardware costs are the driving factors, then a

random search algorithm such as the Linear Random Search (LRS)

should be chosen. If the adaptive filter is not an adaptive linear

combiner or programmable transversal filter, then the Differential

Steepest Descent (DSD) algorithm or a Random Search Algorithm would

be appropriate choices since neither of these algorithms assume a

transversal filter structure for the adaptive filter in the ALE

(LMS algorithm does assume that the adaptive filter is a transver-

sal filter).
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